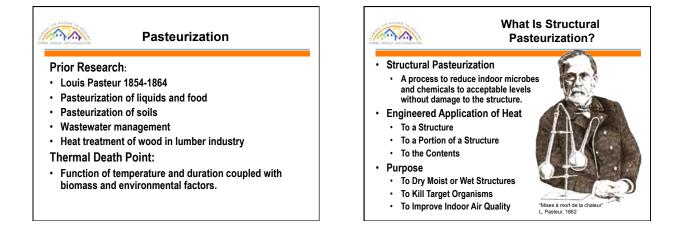
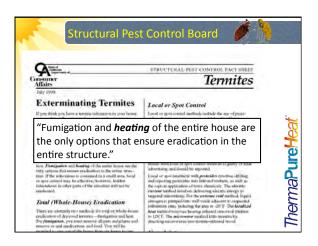
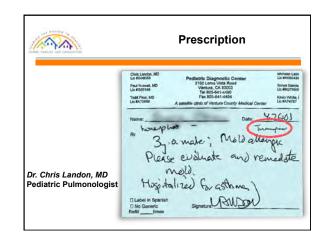


Dave Hedman, CEO *ThermaPur*e™ *Heat*

David Hedman is the co-inventor, and patent holder, of the new ThermaPureHeat process for pasteurizing buildings. The National Society of Professional Engineers awarded the technology as the "Best New Product in the Nation" for insect application. The ThermaPure process has been used in the remediation of anthrax, Hantavirus, mold sites, and many other biological contaminates. David received his academic training at Stanford University in Engineering and Economics. David has received extensive flight training, and is currently a licensed commercial pilot.

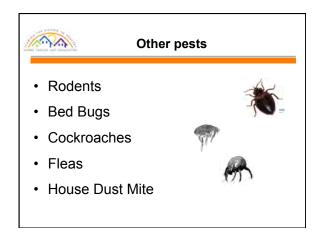


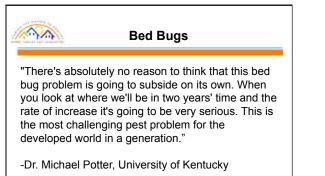


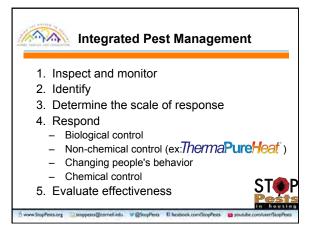

Need for Green Technology

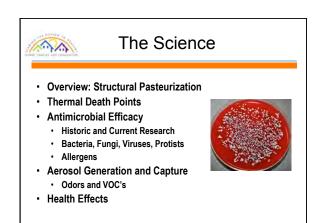
31 Jan 2011, TRENTON - An \$860,000 penalty was imposed today by the Department of Environmental Protection on TVF Pest Control of Newark for misapplication of hazardous pesticides in residences to control bedbugs, Commissioner Bob Martin announced.

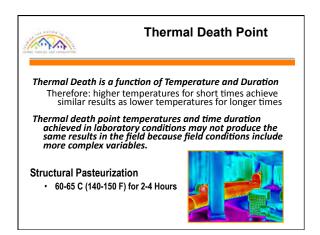
"This is an issue of public health and welfare," said Commissioner Martin. "Bedbug infestation is a growing problem in New Jersey and across the nation. The DEP is sending a strong and clear message in this case that when companies put residents at risk by intentionally misusing pesticides in dealing with bedbugs they will be dealt with severely."


Allison Taisey, BCE Northeastern IPM Center Cornell University


A A


Allison Taisey is a board certified entomologist whose mission is to help the US housing industry reach the point where no resident is living in a high-level infestation of public health pests. Through a HUD-USDA interagency agreement, she runs the StopPests in Housing Program for the Northeastern IPM Center at Cornell. Outside of her work at Cornell, she has worked for the NYC Department of Health, Modern Pest Services, BedBug Central, and the National Center for Healthy Housing. Allison is an active member of the Entomological Society of America, the National Pest Management Association, and Pi Chi Omega.


Lumber Dimension	Board Length (cm)	Location	No. Alive	No. Dead	Percent Mortality
1 by 8	151.1	Attic	0	201	100
1 by 8	219.7	Attic	0	783	100
4 by 4	94.	Attic	0	160	100
1 by 8	144.8	Wall	0	289	100
1 by 8	178.6	Wall	0	106	100
2 by 4	221.0	Wall	0	149	100
1 by 8	104.1	Subarea	0	465	100
1 by 8	177.8	Subarea	0	350	100
1 by 4	91.4	Subarea	0	70	100

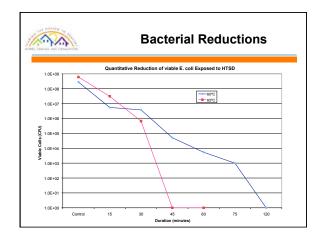


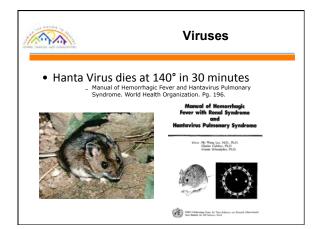
Sean P. Abbott, Ph.D. is a microbiologist specializing adoor contamination issues and President of Natural Link N	
ab in Reno, Nevada. Dr. Abbott has lectured for the Universit	
levada, Reno, Medical Microbiology and Immunology Gradu	
Studies program, and has taught Fungal Biology and Mec	
Aycology at the University of Alberta, Edmonton, Canada.	
ver 20 years experience, Dr. Abbott has 30 publications inclue	
esearch on airborne biological hazards, microbial contaminatio	
ne indoor environment, and opportunistic human pathoge	
Current research interests include antimicrobial efficacy test	
	ntai
uality (IEQ) monitoring.	
sect/arthropod vectors of microbes, and indoor environme ality (IEQ) monitoring.	

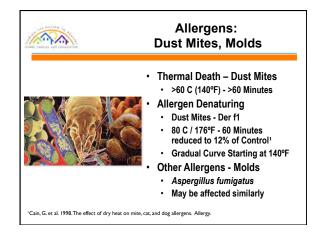
	Thermal Death Point Insects & Protista					
Specimen	Temp. (F)	Time	Reference			
Adult German Cockroach	120 F 27 Min		Forbes & Ebeling, 1987			
Bedbug – Adults and Nymphs	113 F (45 C) 15 Min		Gulmahamad 2002			
Bedbug - Eggs	113 F	60 Min	Gulmahamad 2002			
Cryptosporidium parvum	72.4 C/ 1 Min		Fayer (1994)			
Giardia lamblia 50 C/		in	Cerva (1955)			
Entamoeba hystolytica	60 C/ 1 Min		Chang (1943)			

	Thermal Death Point Fungi					
Target Contaminate	Lethal Temp	Duration	Reference			
Wood Fungi (Staining Fungi)	151F / 66C	75 Minutes	Compendium of Soil Fungi, pg., 106 (Chidester, 1937, 1939)			
Basidiomycotina	122F / 50C	N/A	Compendium of Soil Fungi, pg., 107 (Hulmes, Franks)			
Poria – Wood Eating Fungi	151F / 66C	75 Minutes	Compendium of Soil Fungi, pg., 106 (Chidester, 1937, 1939)			
Fomes (<i>Fomitopsis rosea</i>)	151F / 66C	75 Minutes	Compendium of Soil Fungi, pg., 106 (Chidester, 1937, 1939)			
Stachybotrys chartarum	140F/60C	30 Minutes	Compendium of Soil Fungi, pg., 745			
Aspergillus alutaceus	144F/62C	20 Minutes	Compendium of Soil Fungi, pg., 82			
Aspergillus candidus	144F / 62C	N/A	Compendium of Soil Fungi, pg., 84			
Aspergillus ustus	144F / 62C	25 Minutes	Compendium of Soil Fungi, pg., 119			
Aspergillus niger	145F / 63C	25 Minutes	Compendium of Soil Fungi, pg., 103			
Alternaria alternata	145F / 63C	25 Minutes	Compendium of Soil Fungi, pg., 103			

<u> </u>	Thermal Death Point Bacteria				
Aeronomas hydrophila	50 C/ 3 Min	Gordon (1992)			
Campylobacter spp.	75 C/ 1 Min	Bandres (1988)			
Escherichia coli	65 C/ 1 Min	Bandres (1988)			
Legionella	66 C/ 45 Sec	Sanden (1989)			
Mycobacterium avium	70 C/ 3 Min	Robbecke (1992)			
Salmonella spp.	65 C/ 1 Min	Bandres (1988)			
Shigella spp.	65 C/ 1 Min	Bandres (1988)			
Vibrio cholera	55 C/ 1 Min	Roberts (1979)			
Yersinia enterocolitica	60 C/ 30 Min	Frazier (1988)			

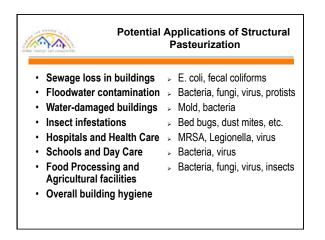

Structural Pasteurization

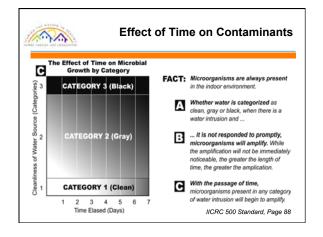

Research implications (Abbott et al, 2011¹) :


- Convective dry heat can be used to sanitize building materials *in situ* Typically used in conjunction with structural drying and traditional
- microbial remediation

 Allows sanitization of entire structures, portions of structures, contents
- Provides hygiene benefits by reducing overall levels of microorganisms in indoor environments
- Reduce risk of bacterial disease transmission
- 'Green' process, no antimicrobial chemicals, no development of resistant bacterial strains
- Mortality of E. coli Attained at 60°C (140°F) for 2 hours

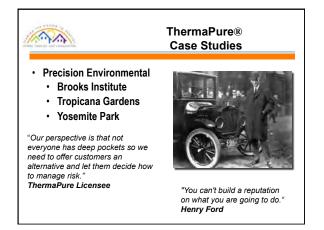
ott, S.P., L. Chase and M.C. Villines. 2011. Efficacy of structural pasteurization for reduction of viable i environments. Proceedings Indoor Air 2011, 583:1-6.





Odors and VOC's (A)A Temp. 110 - 130°F Odors correspond to • chemicals dissolved in air or Vapor pressure Volatile organic compounds differential Hours to days (VOC's) Move as much air as Off-gassing from building possible materials increases in wet Maximize exhaust structures

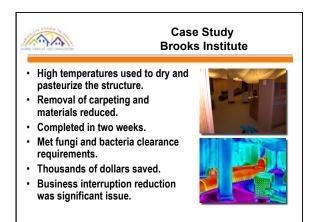
- mVOC's from microbial growth •
- Heating increases volatilization • and can eliminate odor sources
- Air scrub with carbon
- filtration

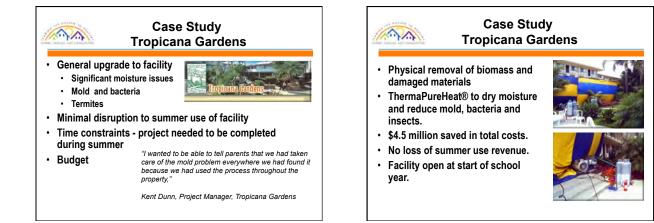


Tablet of reserver	Survival on Surfaces					
Contaminant	Туре	Typical Survival w/ o Sanitization				
Echovirus / Rotovirus	Virus	Up to 3 weeks / months				
E. coli	Bacteria	Over 10 months				
Enterococcus faecalis	Bacteria	Up to 16 weeks				
Cryptosporidium parvum	Protist	Up to 6 Months				
Mold spores	Fungi	Months to years				

Health Effects ANA In Damp Buildings In the Aftermath of Katrina - "Workers and Returning Residents Should Use Appropriate Personal Protective Equipment and Exposure Mitigation Techniques to Prevent Morbidity and Long-Term Health Effects." (Solomon 2005) • Presence of Mold Odor in a Home was Associated with a 2.4 fold Increased Incidence Rate of Asthma Among Children. (Jaakkola et al. 2005) . 10% chance of Asthma to a child Increases to 14% chance in a Damp Structure. (Burge 2007) . IOM Committee concluded in 2004 that there is Sufficient Evidence of

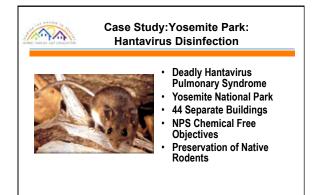
a Causal Link between Indoor Dampness and Upper Respiratory Tract Symptoms, Cough, Wheeze, frequency and severity of Asthma Symptoms (IOM 2004)


Case Study Brooks Institute


Storm water, sediment and other debris impacted a large percentage of the buildings.

(A)A

- Preliminary testing revealed elevated mold spore counts and high moisture levels.
- School didn't want to have facility shut down during school year.



A A

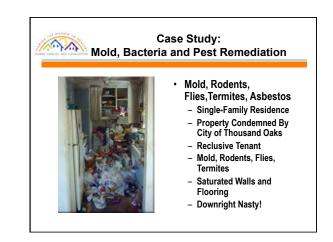
Met Efficacy

Objectives

Varmints

More Case Studies…

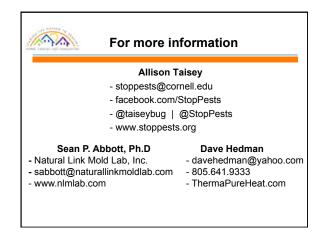
• Multi Symptom home


(And A

- Formaldehyde Bake-Out
- Unknown Target in School
 Custom Home in Orange County


"Our perspective is that not everyone has deep pockets so we need to offer customers an alternative and let them decide how to manage risk." ThermaPure Licensee

"You can't build a reputation on what you are going to do." Henry Ford



Case Study:							
Custom Home in Orange Co.							
Location		TPH Actual Xactimate		ditional ctimate	\$ Savings	% Saving s	Other Costs
Custom Home – Orange Co.							
Water Extraction - Structural		07.007			A (10.101)	04004	
Drying Reconstruction Costs	\$	27,087	\$ \$	8,666 42,889	\$ (18,421) \$ 42,889	-213% 100%	
Additional Living Expense (ALE)	\$	750	\$	10,500	\$ 9,750		
Secondary Damage - Mold or Bacteria							Unknown
Time Required to Pre-Loss							
Condition	;	3 days	4	2 days			
Totals	\$	27.837	s	62.055	\$ 34,218	55%	\$ 51

